青岛科技大学石墨烯多孔水凝胶,增强机械和

北京中科白瘕风医院是三甲吗 https://yyk.39.net/hospital/89ac7_map.html

吸光水凝胶提供了一种利用太阳能快速蒸发水的方法。然而,由于太阳能吸收剂和水凝胶基质之间的微弱界面相互作用以及溶胀水凝胶基蒸发器的难以控制的表面形貌,要获得兼具耐用机械性能和高效能量利用的吸光水凝胶仍然具有挑战性。

最近,科研人员展示了一种有效的纳米限制策略,通过氢键和疏水相互作用的强界面相互作用来组装海绵状聚(乙烯醇)/类Janus氧化石墨烯混合水凝胶(SPJH)。所得的SPJH具有由气泡和冰晶模板化的耐人寻味的分层微观结构,显示出高韧性(~kJm-2)和极限应变(~%),是吸光水凝胶的三倍以上和4.18kgm–2h–1的高蒸发率,在1次太阳照射下(相对湿度=20%;温度=25°C),蒸发率高达95%,通过协同机械和能量纳米限制和定制的表面形貌实现在设计的混合水凝胶中。这种具有巧妙设计原理的基于混合水凝胶的太阳能蒸发器为可扩展和可加工的太阳能水净化设备提供了途径。

图1.基于海绵状PVA/Janus类氧化石墨烯混合水凝胶(SPJH)的太阳能蒸汽生成(SVG)示意图。

图2.(a)准备好的SPJH的照片。(b-d)不同放大倍数下的SEM图像显示(b)1mm尺度的孔隙形态,(c)μm尺度的孔隙形态,以及(d)50μm尺度的孔隙形态。(e)PHs、SPHs和SPJHs的孔径分布。(f)FTIR光谱显示了JGO、SPH和SPJH的化学成分。(g)JGO、SPH和SPJH的拉曼光谱;SPH和SPJH的拉曼成像。

图3.(a)具有不同JGO含量的SPJH的应力-应变曲线。(b)具有不同JGO含量的SPJH的拉伸韧性。(c)具有不同JGO含量的JGO和SPJH的XRD谱。(d)SPHs和SPJHs多孔形态的比较。(e)动态力学分析显示了SPHs和SPJHs的储能模量(G)和损耗模量(G")。(f)SPJHs与其他吸光水凝胶的拉伸韧性比较。

图4.(a)PJH和SPJH表面反射的光示意图以及PJH和SPJH表面的数码照片。(b)约1mm厚的SPJH和PJH片材的UV-visNIR光谱。棕色虚线表示气团1.5全球(AM1.5G)倾斜太阳光谱的归一化光谱太阳辐照度密度。(

图5.(a)SPJH、PJH、SPH和PH在1个阳光下(1kWm-2)的水质量损失,以纯水为对照。内图是太阳水分蒸发PH、PJH、SPH、SPJH的宏观图。(b)SPJH的数字和红外图像,照射时间为5、10和60分钟。(c)蒸发率随时间、盐度(‰)和相对湿度(RH)(%)的变化。深蓝色区域表示水分蒸发速度快,浅蓝色区域表示水分蒸发速度慢。(d)PH、SPH、PJH、SPJH和水的蒸发焓。(e)SPJH的持续时间测试基于在1个太阳下连续1周(小时)的太阳能淡化。(f)SPJH在1太阳下与之前的报告相比的蒸汽发生性能。

图6.(a)模拟实际净水设备的太阳能净水系统的数码照片和示意图。(b)SPJH在1个太阳下以0、20、40和60mLmin-1的不同气流速度输送水。(c)脱盐前后实际海水样品中四种主要离子的测量浓度。(d)使用电极间距离恒定的万用表评估水的纯度。(e)10小时室外太阳能海水淡化过程中的纯净水量,仔细跟踪太阳通量、环境温度和风速。

相关论文以题为BiomimeticHybridizationofJanus-likeGrapheneOxideintoHierarchicalPorousHydrogelsforImprovedMechanicalPropertiesandEfficientSolarDesalinationDevices发表在《ACSNano》上。通讯作者是青岛科技大学宗鲁副教授。

参考文献:

doi.org/10./acsnano.1c



转载请注明:http://www.qingdaoshizx.com/qdzx/755685.html

  • 上一篇文章:
  • 下一篇文章: 没有了
  • 网站简介| 发布优势| 服务条款| 隐私保护| 广告合作| 网站地图| 版权申明

    当前时间: